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Speech recognition

* Many exciting & valuable applications
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Speech recognition

* Many exciting & valuable applications

“Speech Is 3x Faster than Typing for English and Mandarin Text Entry on Mobile Devices”
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[Ruan et al., 2016]




Speech recognition

* Many components make up a complete

speech application:

— Speech transcription

This lecture

— Word spotting / trigger word

— Speaker identification / verification



Speech recognition

* Given speech audio, generate a transcript.

—rrr P P b

Speech Recognizer

He l | o world

Important goal of Al: historically hard for machines, easy for people.



Traditional ASR pipeline

* Traditional systems break problem into
several key components:

Audio wave

Acoustic Model P(O’W)

W* = argmax P(W‘X) Language Model P(W)
%%

= argmax P(O|W)P(W) Gales & Young, 2008
%% Jurafsky & Martin, 2000



Traditional ASR pipeline

e Usually represent words as sequence of “phonemes”:

wy = “hello” = [HH AH L OW] = [¢1¢2¢3G4]

 Phonemes are the perceptually distinct units of sound
that distinguish words.

— Quite approximate... but sorta standardized-ish.
— Some labeled corpora available (e.g., TIMIT)

Phone Phone Phone
Example Example Example
Label Label Label
1 1y beet 22 ch choke 43 en button

2 ih bit 23 b bee 44 eng Washington



Traditional ASR pipeline

* Traditional systems usually model phoneme sequences instead of
words. This necessitates a dictionary or other model to translate.

Audio wave

Pronunciation
Feature representation Model P(Q’W)

Decoder

(HMM / WFST Acoustic Model Fed(@l[@)
infrastructure)

W* = argmax P(W’X) Language Model P(W)
%%

argmax »  P(O|Q)P(QIW)P(W)
Yo



Traditional ASR pipeline

* Traditional pipeline is highly tweak-able, but
also hard to get working well.

* Historically, each part of system has own set
of challenges.

— E.g., choosing feature representation.



Deep Learning in ASR

 Where to apply DL to make ASR better?
— Good start: improve acoustic model P(O|Q)

* Introduction of pre-training/DBN:

DBN-HMM 5 from DBN-HMM Triphone Senones yes 71.8% 69.6%
ML GMM-HMM baseline 62.9% 60.4%
MMI GMM-HMM baseline 65.1% 62.8%
MPE GMM-HMM baseline 65.5% 63.8%
ML GMM-HMM baseline 2100 hours of training data (transcription is 90% accurate) - 62.9% [13]

[Dahl et al., ICASSP 2011]



Traditional ASR pipeline

Audio wave

Pronunciation
Feature representation Model P(Q’W)

Decoder

(HMM / WFST Acoustic Model  Jed(@ll@)
infrastructure)

W* = argmax P(W’X) Language Model P(W)
%%

= argmax )  P(O|Q)P(QIW)P(W)
Yo



A End-to-end DL
Accuracy speech engine?

DL Acoustic Models

Traditional ASR

Goal of this tutorial

>
Data + Model Size



Scale model

Starter code: github.com/baidu-research/ba-dIs-deepspeech
Get a simple max-decoded pipeline running.



Outline

* DL speech pipeline walkthrough
— Preprocessing
— CTC
— Training
— Decoding & language models

e Scaling up!
— Data

— Systems

* Production / reality



Raw audio

e Simple 1D signal:
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Typical sample rates for speech: 8KHz, 16KHz.
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Pre-processing

* Two ways to start:

— Minimally pre-process (e.g., simple spectrogram).
 We’ll use this.

— Train model from raw audio wave.
e |t works!
See, e.g., Sainath et al., Interspeech 2015



Spectrogram

* Take a small window (e.g., 20ms) of waveform.
— Compute FFT and take magnitude. (i.e., power)
— Describes frequency content in local window.

“Hello world”

__—
Apdpehnd — - -
_ | IR

20ms Frequency

Power

1 Frame



Spectrogram

* Concatenate frames from adjacent windows to
form “spectrogram”.




Acoustic Model

* Goal: create a neural network (DNN/RNN)
from which we can extract transcription, y.

— Train from labeled pairs (x,y*)

y = “Hello”




Acoustic model

 Main issue: length(x) !=length(y)
— Don’t know how symbols in y map to frames of audio.
— Traditionally, try to bootstrap alignment — painful!

* Multiple ways to resolve:

— Use attention, sequence to sequence models, etc.
[Chan et al., 2015; Bahdanau et al., 2015]

— Connectionist Temporal Classification [Graves et al., 2006]



Connectionist Temporal Classification (CTC)

e Basicidea:

1. RNN output neurons ¢ encode distribution over
symbols. Note length(c) == length(x).

For phoneme-based model: ¢ € {AA, AE, AX, ..., FR1,blank}

For grapheme-based model: ¢ € {A, B,C, D, ..., Z,blank, space}

2. Define a mapping G(c) =2 y.
3. Maximize likelihood of y* under this model.



Connectionist Temporal Classification (CTC)

—

RNN output neurons ¢ encode distribution

over sym bols. Note length(c) == length(x).
For grapheme-based model: ¢ € {A, B,C, D, ..., Z, blank, space}

Ci17 7 P(c,; =B’ | x)

A

| “blank’ [ [T
A A A A A A A A
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Connectionist Temporal Classification (CTC)

1. RNN output neurons c encode distribution

over sym bols. Note length(c) == length(x).
For grapheme-based model: ¢ € {A, B,C, D, ..., Z, blank, space}

e QOutput neurons define distribution over whole
character sequences ¢ assuming independence:

P(c|z) = [[;L, P(ci|z)

P(c=HHH E_LL LO__|z) = P(c; = H|x)P(co = H|x) - - - P(c15 = blank|x)



Connectionist Temporal Classification (CTC)

2. Define a mapping 3(c) =2 y.

— Given a specific character sequence ¢, squeeze
out duplicates + blanks to yield transcription:

y=0(c)=06HHH_E_ LL_LO__ )= “HELLO”



Connectionist Temporal Classification (CTC)

 Mapping implies a distribution over possible
transcriptions y:

P(cle) =1 0.1 I _H—E——'L—LO———F”HELLO” v.1
0.02 HH__E__LL_LO___|~“HELLO” v.2
.01 HHH_E__L_L_OH__|| “HELL OH"

0.01 HHH_EE_LL_L_O__|| “HELLO" v.3
YY__E__LL_LO_W_]| "YELLOW

P(ylz) = Zc;ﬁ(c):y P(CV

-
P(“HELLO”)=0.1 + 0.02 + 0.01 + ..




Connectionist Temporal Classification (CTC)

3. Update network parameters 6 to maximize
likelihood of correct label y*:

0™ = arg max log P(y*® ()
31 Z g P(y*V|2(")

— arg max lo P(c|lz®
3 D log ), P(ca)

i aBO=y

* [Graves et al., 2006] provides an efficient dynamic
programming algorithm to compute the inner
summation and its gradient.



Connectionist Temporal Classification (CTC)

Use usual gradient descent methods to optimize.
Tune entire network with backpropagation.

— Given network outputs, many off-the-shelf packages to compute CTC
loss (likelihood) from ¢ and y*, and gradient w.r.t. c.

C

* Warp CTC: github.com/baidu-research/warp-ctc
* Stanford CTC: github.com/amaas/stanford-ctc
e Tensorflow: tf.nn.ctc_loss

L(0) = log P(y"® | x) = CTC(ct, y°0)

:

Efficient OTS software

\/ . CTC(ct, y*(i)

% % Neura network% %

:



Training tricks

* Getting RNN to train well is tricky.

“SortaGrad”: order utterances by length Batch normalization
during first epoch.
60
s — Baseline 60 5-1 BN
Baseline + Sortagrad 5-1 No BN
>0 50 — 9-7BN
| 9-7 No BN
g 40
E 35 )
30
30
25 A A
20
20
50000 100000 lteﬁ:'Z(t)i(;(r)‘Onumb;rOOOOO 250000 300000 50 100 150 200 250 300

Iteration (x10°)
See [“Curriculum Learning”, Bengio et al., ICML 2009] See [loffe & Szegedy, 2015]



Decoding

* Network outputs P(c|x). How do we find most likely
transcription from P(y|x)?

* Simple (approximate) solution:

5 (argmax P(ea) )

C

“blank” |«

IICABII

* Often terrible, but a useful diagnostic to “eyeball” models.



Example

 Wall Street Journal:
— https://catalog.ldc.upenn.edu/ldc93s6a
— Reading WSJ articles.

Free alternative: LibriSpeech
— http://www.openslr.org/12/ [panayotov et al., ICASSP 2015]

— Read speech from public domain audiobooks.



Example

RNN to predict graphemes

(26 characters + space + blank):
— Spectrograms as input.

— 1 layer of convolutional filters.

— 3 layers of Gated Recurrent Units.
e 1000 neurons per layer.

— 1 full-connected layer to predict c.

— Batch normalization
[loffe & Szegedy, 2015]

CTC loss function (Warp-CTC)

Train with SGD+Nesterov
momentum.

Typical model family:

( CTC )
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Example

 What happens inside?
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Network outputs (c) at Iteration 300
(Thresholding / contrast added for clarity.)

Max decoding: h
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Network outputs (c) at Iteration 1500
(Thresholding / contrast added for clarity.)

Max decoding: bhe y uar j usst hin fro ton
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S C N =0TO0S3 A QD ONTQ

AD N X

Network outputs (c) at Iteration 2500
(Thresholding / contrast added for clarity.)

Max decoding: bhey yore j esstand fromgntte
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Frame number
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NS XS <CCrN=0TO0S3 _A._TJQ-+0DONTQ

space
blank

Network outputs (c) at Iteration 5500
(Thresholding / contrast added for clarity.)

Max decoding: they ar jest in front

Ground truth: “There just in front”

H H
I KNI ) lI-II

10 20 30 40 50 60 70
Frame number

O | | | | | | | | | | | | | | | | | | | | | | | | | | | |



Max Decoding

* Examples:

Max Decoding
“put pore lotttle thank and sr crits sinpt the atting to them

/6 having been turned ef the wal al thes years con”

True Label
“the poor little things cried cynthia think of them
having been turned to the wall all these years”

Max Decoding

@ “that is true baddel gre”

True Label
“that is true badauderie”



Decoding

* Network outputs P(c|x). How do we find most
likely transcription from P(y|x)?

* No efficient solution in general. Resort to
search!

— See [Graves et al., 2006] for prefix decoding
strategy.



Language models

* Even with better decoding, CTC model tends

to make spelling + linguistic errors. E.g.:
RNN output

what is the weather like in bostin right now
prime miniter nerenr modi From Hannun et al., 2014.
arther n tickets for the game

* P(y|x) modeled directly from audio.

— But not enough audio data to learn complicated
spelling and grammatical structure.

— Only supports small vocabulary.
— For grapheme models: “Tchaikovsky” problem.



Language models

e Two solutions

— Fuse acoustic model with language model: P(y)

— Incorporate linguistic data:
* Predict phonemes + pronunciation lexicon + LM.

e Possible to train language model from massive
text corpora.

— Learn spelling + grammar
— Greatly expand vocabulary

— Elevate likely cases (“Tchaikovsky concerto”) over
unlikely cases (“Try cough ski concerto”).



Language models

e Standard approach: n-gram models

— Simple n-gram models are common, well
supported.

* KenLM: kheafield.com/code/kenlim/

— Train easily from huge corpora.
— Quickly update to follow trends in traffic.

— Fast lookups inside decoding algorithms.



Decoding with LMs

* Given a word-based LM of form P(w,,,|w,.,),
Hannun et al., 2014 optimize:

arg max P(w|z)P(w)%[length(w)]”

w

Pw|x) = P(y|x) for characters that make up w.

« and 3 are tunable parameters to govern weight
of LM and a bonus/penalty for each word.



Decoding with LMs

e Basic strategy: beam search to maximize

arg max P(w|z)P(w)%[length(w)]”

w

Start with set of candidate transcript prefixes, A = {}.

Fort=1..T:

For each candidate in A, consider:
1. Add blank; don’t change prefix; update probability using AM.
2. Add space to prefix; update probability using LM.
3. Add a character to prefix; update probability using AM.
Add new candidates with updated probabilities to A ..

A := K most probable prefixesin A_.,.



Decoding with LMs: Examples

RNN output

Decoded Transcription

what is the weather like in bostin right now
prime miniter nerenr modi
arther n tickets for the game

what is the weather like in boston right now
prime minister narendra modi
are there any tickets for the game

From Hannun et al., 2014.



Rescoring

* Another place to plug in DL algorithms:
Systems usually produce N-best list.
Use fancier models to “rescore” this list.



Rescoring with Neural LM

 Example: train neural language model and rescore
word transcriptions.
— Cheap to evaluate P(w, |w, ;,W, ,, ..., w;) NLM on many
sentences.

— In practice, often combine with N-gram trained from big
corpora.

(-25.45) I’'m a connoisseur looking for wine and porkchops. -24.45
(-26.32) I’'m a connoisseur looking for wine and port shops. -23.45

1.
2.
3. ..
4
5



SCALING UP



Scale model

|II

 Two main components to scale from “tutorial” to state-of-

art accuracy.
— Data
— Computing power



Data

* Transcribing speech data isn’t cheap, but not
prohibitive:
— Roughly 50¢ to S1 per minute.

e Typical speech benchmarks offer 100s to few
1000s of hours.

— LibriSpeech (audiobooks)
— LDC corpora (Fisher, Switchboard, WSJ) (SS)
— VoxForge



Types of speech data

* Application matters

— We want to find data that matches our goals.

Styles of speech

Read
Conversational
Spontaneous
Command/control

Issues

Disfluency / stuttering
Noise

Mic quality / #channels
Far field

Reverb / echo
Lombard effect
Speaker accents

Applications

Dictation

Meeting transcription
Call centers

Device control
Mobile texting

Home / loT / Cars



Read speech

* Reading is inexpensive way to get more data.
< $10/hour depending on source

* Disadvantages:
— Misses inflection/conversational tone
— Lombard effect
— Speaker variety sometimes a limitation.



Read speech

* Some tricks we’ve tried to address these:
— Elicit “voice acting” by using movie scripts:

O

— Elicit Lombard effects by playing loud noise
(sometimes via headphones):

[Sanjeev Satheesh]



Augmentation

 Many forms of distortion that model should
be robust to:

— Reverb, noise, far field effects, echo,
compression artifacts, changes in tempo

Raw audio ($SSS) Novel audio

At -

http://sox.sourceforge.net/




Example: additive noise

Noisy speech

DeepSpeech 2: 10K hours of raw audio -> 100K hours of novel training data



Example: tempo

WSJ example Faster WSJ reader w/ reverb

sox <infile> <outfile> tempo 1.3 reverb

» |In general: easier to engineer data pipeline
than to engineer recognition pipeline.



Results: DeepSpeech 2

e Steady fall in error rates with new raw data.

60
50
40

30
\ ==WER-Clean
20 ==\WER-Noisy

10 B

0
100 1000 10000

Hours of training data

(Assuming we have a big enough model!)



Computation

* How bigis 1 experiment?

At least:

(# connections)- (# frames) - (# utterances) -
(# epochs) - 3 - 2 FLOPs

E.g.: for DS2 with 10K hours of data:
100e6 - 100 - 10e6 - 20 -3 -2 =1.2e19 FLOPs

~30 days with well-optimized code on Titan X.



Computation

* Easy: use more GPUs with data parallelism.

— Minibatches up to 1024 seem useful.
— Would like >64 utterances per GPU.

* Current servers support ~8 Titans.

— Will get you < 1 week training time.



Computation: multi-node

* Many ways to use more GPUs.
— At Baidu, use synch. SGD:

— 5-3(2560)
9-7 (1760)

CIy | Needed to optimize
S o | OpenMPI to achieve
2 gu efficiency.

E

20 2! 22 23 24 2° 26 27
GPUs

— Other solutions:
* Async SGD [Dean et al., NIPS 2012]
e Synch SGD w/ backup workers [Chen et al., ICLR 2016]



Computation

* Need optimized single-GPU code. But a lot of
off-the-shelf code has inefficiencies.

* E.g., Watch for bad GEMM sizes:

op=NN M,K = 2560

) CuBLAS (Nov. 2015)

nervana fp32
cublas fp32
nervana fpl6
cublas fpl6

Performance

32 64 128 192 256
N

Minibatch size



Computation

* Try to keep similar-length utterances together.

Count

1600

1400 |

1200

1000 |

800

600 |

400

200

0!

0 5 10 15 20 25

Utterance length

(LibriSpeech
clean data.)



Computation

* Try to keep similar-length utterances together.

Bad minibatch:

oo

Good minibatch:

(1)
(2
NE)

(@)



Results

* Scaled up models in Mandarin:

™ Single human

M Deep Speech

Character Error Rate (%)

Test 1



PRODUCTION



Production speech

e So far:
— Train acoustic + language models.
— Scale them up.

 But how to serve users?
— Accuracy is only one measure of performance.
— Users care about latency.

— Need to serve economically.



Latency

* Many acoustic model structures hard to serve
In practice.

— E.g., Bi-directional RNNs.

Must wait for all audio
to arrive before computing.

1] 1 e

3
-

TRERLCCRE
TRRRLCCRET
TRRRC TR
IR



Latency

e Use forward-only RNNs. But:
— Usually hurts accuracy. Why? Context?

— CTC could learn to delay output on its own in order to
improve accuracy.
» In practice, tends to align transcription closely.
» This is especially problematic for English letters (spelling!)

“127%%%7%%2%%2¢

ittt




Latency

* Fix: bake limited context into model structure.

e Caveat: May need to compute upper layers quickly after sufficient
context arrives. Can be easier if context is near top.



Latency

* Fix: Move most of context to the top.

A A\ AT LT AT A £ A A A £ AN SN Y T s

SRR RR SRS NS NN

???????????????

=%
_é

* Can easily compute/recompute top layers online.



Pruning candidates

 For models with many character outputs (e.g.,
Mandarin), decoding slows down.

— Trick: only consider top 99% of characters according to
CTC.

— 150x speedup for 5000 char KOUtplTIt. Only consider fh, s, blank}

QDN TQ

53 _~_.

>A
ADNK XE<C~+0=0QT O

1%2]
g5
QU




Throughput

e Large DNN/RNN models hard to deploy on CPUs.

* Large DNN/RNN models run great on GPUs.
— But only if “batch size” is high enough.
» Processing 1 audio stream at a time is inefficient.

Performance for K1200 GPU:

Batch Size FLOPs Throughput
1 0.065 TFLOPs 1x
10 0.31 TFLOPs 5x
32 0.92 TFLOPs 14x

[Chris Fougner]



Throughput

* Batch packets together as data comes in.

» Arrows represent packet of speech data (e.g., 100ms).
» ldea: Process packets that arrive at similar times in parallel.

[Chris Fougner]



Throughput

B 10 sireams
D20 B 20 sircams
£ 30 sireams
0.35
0.30
=
= b 25
% 0.20
o1
0.10
D00
0.00
0 ] 2 3 4 5 6 T b a 10 11

Batch size

With ~30 concurrent users, few GEMM batches have less than size 4.



Summary

* Deep Learning makes first steps to state-of-art
speech system simpler than ever.

* Performance significantly driven by data &
models.

— Focus on scaling data + compute.
— Try more models, make more progress!

 Mature enough for production.
— DeepSpeech model is live in Mandarin & English.

Starter code: github.com/baidu-research/ba-dls-deepspeech
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